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1. INTRODUCTION

1.1 Previous Studies Related to Seismic Earth Pressure on Retaining Walls

Seismic effects on rigid retaining walls (i.e. gravity walls) have been
studied both theoretically and experimentally. Mononobe (1919) and Okabe
(1926) proposed a simplified formulation to evaluate the seismic lateral
earth pressure on a retaining wall backfilled with dry cohesionless
naturals (Mononobe-Okabe method). Their method is based on a plastic
limit condition and assumes a triangular distribution of earth pressure
along the wall height. According to this pressure distribution, the total
force is acting at the one-third of the wall height from the bottom. Using
small scale rigid wall models with dry sand backfill, the earth pressure due
to dynamic ground shaking was investigated experimentally by using a
shake table (Mononcbe and Matsuo, 1919; Jacobsen, 1939; Matsuo, 1941; and
Ishii, Arai and Tsuchida, 1960). The experimental results showed that the
maximum lateral earth pressure was roughly equal to that predicted by the
Mononobe-Okabe, but the location of the total lateral force was higher than
one-third of the wall height. It was also shown that the increase of the
permanent lateral earth pressure after the shaking was substantially
higher than the maximum dynamic transient pressure during shaking.
Prakash and Basavanna (1969) and Seed and Whitman (1970) modified the
Mononobe-Okabe method and assumed a more realistic distribution of
earthquake lateral pressure. Sabzevari and Ghahramani (1974) used the
incremental rigid plasticity theory to obtain analytical expressions and
construct stress displacement and velocity fields behind the wall. This
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method enables us to compute the lateral earth pressure for various types of

rigid wall displacement.

Formulations based on elastic analysis were also developed for the
evaluation of the dynamic lateral earth pressure. Matsuo and Ohara (1965)
and Tajimi (1973) solved elastic wave equations to obtain the formulations.
Scott (1973) modeled the soil and wall system as an elastic vertical shear
beam and a rigid wall 6onnected each other by distributed horizontal
Winkler springs and developed the formulae to compute the dynamic earth
pressure. Given earthquake excitation at the base of the beam, the beam
simulates the free-field earthquake ground motion, and Winkler springs
produce the soil-wall interaction force (i.e. lateral earth pressure). Those
formulations based on elastic analysis generally estimate the maximum
lateral earth pressure significantly higher than those estimated by the
formulations based on a plastic limit condition. Elastic analysis may be
justified if the lateral response of the wall is not large enough to produce a
plastic limit condition behind the wall.

It depends on the displacement of the wall whether the backfill soil is
in an elastic condition or plastic limit condition. The nonlinear finite
element method is a convenient analysis tool to evaluate the lateral earth
pressure since the conditions in the soil are automatically adjusted
according to the magnitude of strains developed in the soil. Potts and
Fourier (1986) used a finite element method and found that the
displacement pattern of the wall highly affects the amount of the wall
displacement required to fully mobilize the plastic limit condition behind
the wall and the pressure distribution. Those indicate that the wall
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flexibility affects the lateral earth pressure on the wall. Kuralowicz and
Tejchman (1984) investigated experimentally the static earth pressure on
rigid and flexible sheet-pile walls in cohesionless soil. It was observed that
the distribution shape of the lateral earth pressure on a flexible wall was
nonlinear, although that on a rigid wall was nearly triangular. Ayala,
Romo and Gomez (1985) investigated the maximum bending moment of
flexible walls induced by seismic earth pressure by using the finite element

method. Flexibility of the wall was found to affect the maximum moment.

Kurata, Arai and Yokoi (1965) conducted shaking table tests with a
small scale anchored sheet-pile wall model in dry cohesionless soil. They
observed that the ground shaking increased the lateral earth pressure
substantially in the vicinity of the anchor level but did not increase much in
the middle part of the wall. This is due to redistribution of the lateral earth
pressure resulting from flexural deformation of the wall. The total lateral
earth pressure observed during shaking was smaller than that computed
by the Mononobe-Okabe method. It was also observed that the increase of
permanent lateral earth pressure due to the permanent soil deformation
was much larger than the transient dynamic earth pressure. Murphy
(1960) also conducted model tests on an anchored sheet-pile wall subjected
to earthquake shaking. It was pointed out that the wall translated outward
without tilting until the anchor pull failed. As essentially planar slip
surface was observed in the backfill soil. Similar planer slip surface was
observed by Bolton and Steedman (1985).

When the backfill soil is submerged, a portion of the water in the
pores of the soil mass moves with the lateral soil skeleton (restrained water)
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and the other portion moves freely during ground shaking (free water).
The hydrodynamic pressure in the backfll against the wall is due to the
motion of the free water, and this depends on the volume of the free water.
Anzo (1936) formulated the hydrodynamic pressure in the submerged
backfill against the wall. The formulation was based on 2 rigid soil
skeleton, Darcy's flow and Navier-Stokes equations. According to this
formulation, the hydrodynamic pressure in the soil never exceeds the value
computed by Westergard's formula and is smaller for a lower permeability.
Matsuo and Ohara (1965) conducted model tests on the wall with
submerged backfill sand. The observed hydrodynamic pressure was
somewhat larger than that computed by Westergard's formula.
Liquefaction was observed in some of those tests. Ishibashi, Matsuzawa
and Kawamura (1985) proposed the method estimate the dynamic pressure
against the wall retaining submerged backfill soil. The method adopts the
Mononobe-Okabe method (with the soil weight increased by the restrained
water weight) for earth pressure and simplified Anzo's formula for

hydrodynamic pressure.

Towhata and Islam (1987) viewed that the magnitude of permanent
wall displacement was the most critical phenomena for the judgement of
the degree of seismic damage of anchored bulkheads. Based on this view,
they developed a simple method to compute the lateral movement of
anchored bulkheads induced by earthquake shaking assuming a
triangular sliding wedge behind the wall. They considered that the effect of
liquefaction in backfill was particularly important and thus was taken into

account in the method.



12 Observation of Earthquake Damages to Waterfront Sheet Pile Walls

The Niigata earthquake in 1964 caused substantial damages to
retaining structures. Most of those damages were closely connected to the
development of excess pore water pressure associated with liquefaction

process.

The ministry of Transportation (1964) published a detailed report on
earthquake damages in Niigata harbor facilities. The report indicates that
substantial translation of walls occurred toward the water at the wall next
to Yamanoshota Wharf, due to loose reclaimed backfills. The North and
South Wharfs were suffered from excessive two-meter movement of their
walls. Similar movement was detected in the Bandai-Jima area as well,
The North bank of the Shinano River completely collapsed, accompanied by
overall displacement of backfill toward the river. Although the report
concluded that most sheet-pile wall damages were due to tilting, it also
mentioned that lateral translation took place in walls of shallow
embedment. At the areas of all those anchored bulkheads, evidences of

liquefaction were reported.

13 Objective of the Study

The objective of the project is to develop an analysis tool for computing
the behavior and conditions of waterfront sheet pile walls during and right
after the earthquake ground shaking, Key factors for the judgement of the
seismic performance of waterfront anchor bulkheads are bending moment

in the wall and permanent lateral movement of wall, induced by
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earthquake shaking. According to the previous section, those are affected
mainly by elastic and inelastic soil behavior, excess porewater pressure,
flexibility of wall, motions of backfill and wall, and hdro-dynamic pressure
at both front and back sides of the wall. The finite element method may be
the most convenient analysis method to consider rationally all of those
important factors affecting the performance of walls, and thus was

developed in the project.

Fig. 1.1 shows finite element models of a waterfront sheet pile wall.
The effect of water at the front side of the wall is taken into account by added
masses attached at the nodes located at the water-wall and water-soil
interfaces. Those masses are active for motions only in the component
normal to the interface. Soil elements are formulated treating the soil
mass as a water-saturated two phase mixture. This enables soil elements
to simulate the coupling between porewater motions and soil frame
motions, generation and dissipation of excess porewater pressure in a soil
mass, and effects of excess porewater pressure on the soil frame behavior.
Discontinuity of displacements develops at the soil-wall interface due to
large difference in the stiffnesses between those of the wall and soil and dﬁe
to sliding and separation between the wall and soil. This requires special
elements, termed joint elements, to accomodate such behaviors at the

interface.



2. FINITE ELEMENT FORMULATION

2.1 Soil Elements

Submerged soil is treated as a fluid-saturated porous medium. The
nonlinear behavior is implemented in the stress-strain relationship of the

soil frame.

(1) Definitions of Valuables

Porosity n is defined as

J (2.1)

where V¢ = volume or pores or fluid; and Vg = volume of solid.

Relation given in Eq. 1 can be transformed to density relationship as
p=(1-n)p, +np, (2.2)

where p, ps and ps= mass densities of solid-fluid mixture, solid and fluid,
respectively. In order to describe the deformation of a mixture,
deformations of the two phases are identified separately. The components
of deformation of the selid can be denoted by u; (i =1, 2, 3) and components
of displacement of the fluid can be denoted by Uii = 1, 2, 3): i denotes
coordinate axes. The amount of fluid displaced from the solid skeleton, Q;,
is obtained as



Q=AU -u)

where A;j = area of mixture normal to the ith direction.

The displacement of fluid relative to solid skeleton, averaged over the
face of the mixture is obtained as

W, = -2'—‘ =n(U, - 5 ) (2.4)
The strains in the solid skeleton are defined as
g = —é—(ui'j +u ) (2.52)
or
{e} = [Li{u} (2.5b)
where

& fenr & &5 8y & 8y

L) =




The change of fluid volume stored per unit volume of the mixture is

given by

G=w,, (2.52)
or

£={V} fw} (2.6b)
where

(2) Constitutive Relationship for Porous Material

The total stress is applied to the mixture as defined before and is

decomposed into two parts as
o =0y + p5ij 27

where ojj' = effective stress; and p = pore pressure,

Eq. 2.7 can be written in an incremental form as

doij = do'ij + Sij dp (2.8)



Similarly, strains are also decomposed into two parts. Part of the strain is
caused by deformation of grains due to pore pressure, and the part is
caused by deformation of grains and skeleton due to effective stress. This

can be expressed as

5= (&)p * (&), 29

i

Strains in the solid grains induced by pore pressure can be expressed by

using the bulk modulus for solid as

- P
(aA)p _-is_Sij (2.10)

U

Deformation of solid skeleton caused by the effective stress oij is related to
(Eij)o' through the constitutive terms or Dijki

% =Dy &)y (2.11)
Combining Egs. 7 through 11, the following relations are obtained:

;=D (&y)y + PS5

=D, &) - Dy (&p + 08, j
=Dip & _'fp(:Dijkl 8, +p3;; (2.12)
which is rearranged as
G =Dy &y +ap3, (2.13)

where
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3.D.
a=1- ij 1jk18kl (214)

oK,

Continuity of fluid flow will be formulated in order to obtain a relation

for pore pressure taking into the volumetric change of each phase. The
total volume change of the mixture, €;;, consists of the sum of the following

parts:
(1) Amount of fluid flowing out of &, (= change of volume of pores):
(2) Volume change in solid due to p, (= p(1-n)/Ky):
(3) Volume change due to p, (= np/K¢); and

(4) volume change of solid due to effective stress, S = 5;/3

Thus, the continuity condition is formulated as

&
(1-n)+ﬂ+§—g— -~ (2.13)
K, s

Rewriting ¢';; in Eq. 2.15 with Eqs. 2.9, 2.10 and 2.11 leads to

& {% ¥ %}p + EII(—S{DiikﬂL - Diikl(eij)P} -E

1- n
= {"f&:*i}p *‘i‘“ D& - ?]LK:'DiiH%Ié:p -8

or
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p=QE +ag ) (2.16)
where

K. X, @17)

L
Q

Equations for constitutive relation of porous material are

summarized as

o, = DijkI g+ z-.pSij (2.13)

p=QE +ag,) | (2.16)
8.D..8

=1\ ijkl™ki 4

a=1 oK (2.14)

l_=n  an 2.17)

KK (

For nonlinear behavior, the constitutive relation needs to be
expressed in incremental form. The incremental forms of Egs. 2.13 and

2.16 are

do;, = Di‘jkl de,, +a‘ dp3, (2.18)
dp=Q'(d§ +a‘de, ) (2.18)
where
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4
5 j Dijkl ‘Skl
oK,

a'=1-

(2.20)

and D;i is incremental constitutive tensor for skeleton. The value at is

nearly equal to 1 since the second term at the right hand side of Eq. 20 is

very small compared with the first term (Zienkeiewicz at al.,, 1984). Egs.

2.18 and 19 with a = 1 can be rewritten in a matrix form as

{do} = (DI {de} + e} dp

dp=0Q [{r}T{de} + dE,]

where
l_n _ ln
Q K K
and

T
{do} ~{doy, do,, do,; doy, do,, doy,}
T
{de} ={de,; de,, dey; de, de,, dey,}

@.{1 11000

(3) Dynamic Equilibrinm Equation

(2.23)

(2.24)

Two equations are required to describe the equilibrium conditions of

two phase mixture. We will look at the equilibrium conditions in the
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mixture as a whole and in the fluid phase first. Masses of a solid phase

and fluid phase in a unit volume of mixture are respectively (1-n)ps and
npr. Therefore, the equilibrium conditions in mixture as a whole are

described as
0,;,;* (1-0psb; +0p.b, - (1 - mp,id; - np, U, =0 (2.25)

where bj = ith component of body force per unit mass; U = 32u/gt2 cand U =
d2U/ot2. The equilibrium conditions of fluid phase will be developed from the

generalized Darcy's equation described by
w=nU-1)= k; h.j (2.26)

where (WU} _ ow U ul/at; kj; = component of permeability tensor; hjj =
gradient of fluid head in the jth direction. Under the steady state
conditions, the gradient of the head is composed of pressure gradient, body

force gradient and inertia of fluid. This is written as
hy=p;+pb -pl; (2.27)

Combining Eqgs. 2.26 and 2.27, equilibrium conditions in fluid phase can be
described as

p;+9:b, =p U +k (U, - ) (2.28)

Substitution of pfU; in Eq. 2.28 into Eq. 2.25 yields
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.. g
S * pb, - (1-m)psu, + kij 112(Ui - ) -np ; -npeb. =0 (2.29)

Using oij expressed by Eq. 2.7, Eq. 2.29 results in equilibrium condition in

solid skeleton expressed as

o, + (1-mp + (1-m)psb, - (1-np,ii +ki'j1r12(Ui -)=0 (2.30)

Hereafter, Egs. 2.30 and 2. 28 will used for two equilibrium equations

for two phase mixture. Those will be rewritten in a matrix form ag

LG} + (1n){TF p + (1, 10} - (1-p, (i} + 20T} fut=0 @31

{V} p+ pelbh- p{U} - alkl U - o} = O} (2.32)

(4) Finite Element Formulation for Numerical Evaluation
The principle of virtual work requires that for an arbitrary virtual
displacement, the work done through Eqs. 2.31 and 2.32 over the domain of

interest must be equal to zero. This requirement on Eq. 2.31is given by

_[{Bu}T[[L]T{o* )+ (1-n){V)Tp + (1 1-n)p (b} - (1-mp, {ii} +n{k] {U - u}Jdﬂ =0
@ (2.33)

where £ = the domain of interest; (5u} = components of virtual
displacement compatible with {u}. Similarly, application of virtual work
principle to Eq. 2.32 results in
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[tur” (2(71 5 + np (0} - np, (U) - 201 "(0) +alld7 () Jdo=0 (234
Q

where {8U} = components of virtual displacement compatible with {U},

Using Gauss's theorem, Eqs. 2.33 and 2.34 can be reduced to

T

ﬂ[L]T[Su}]T{c'} dQ - J'[au}T[T} dr + (l-n)ﬂ[V}T[Su}] pdQ-
Q r Q

(1-n)j{6u}T[ﬁ} dr - (1-mp, [ (8u)(b) d@ + (1-nyp, [ty aq-
r Q {

an‘{Su}T[k]T{U 4)dQ=0 (2.35)
Q
T Y T T
nﬂ[VJ (8U}) de—nj[BU) [ﬁ}dT-npr‘{b‘U} (b} dQ +
Q T Q
npr-[ﬁU}T[U] dQ + nzj[SU}T[k]T[U -2} dQ=0 (2.36)
Q 9 :

where {T} = components of surface traction in equilibrium with stresses at

the boundary such that
[0} {r} = (T} (2.37)

in which {r} = components of unit vector normal to the boundary I©; and {ﬁ}=

pore pressure at the boundary expressed as

(3) = (clp @38
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The domain is divided into finite elements. Within an element, the
variables are approximated in terms of the values of variables at nodal

points such that

{u} =(N] (u}, {U)=[N] (U} (2.39)

where [N] = matrix of interpolation function for {u} and {U}; (@} and (U} =
vectors of nodal variables of {u} and {U}, respectively. Then, since [N] is

function of spatial coordinates only, it is also approximated that

{i} = N1{ii}, {U) =[N] (T}
{u} = IN1{1}, (U} =[NI{U} (2.40)

Similarly, {8u} and {8U} are approximated by

{8u} = [N1{5g}, (8U} =[N]{SU) (2.41)

Using & defined by Eq. 2.6a with {w} = n{U-u}, Eq. 2.22 can be

rewritten as

ap = ()" (e} + a2
= (BILI(d) + (V)T (qU) - (V) T{du)
= QU-m){V} {du} + Qn(V})T{dU} (2.42)

Substitution of Eq. 2.42 and Eqs. 2. 39 through Eq. 2.41 into Egs.2. 35 and 2.36
leads to
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MI{T) +(C,1(T) - [C,)(T) +J'{Bf{c1 dQ + (K, (T} + [K,)(T) = (£,] (2.43)
Q

My 1(0) - 1€ (8) + [C,) (T) + (1T (@) + (K, 3 (T) = (£ |

where

(M) = nip, [ (NI'[N] a2
{Q

Myl = np | (N]"[N] dQ
(9]

(€,] =0 [INI[T N a2
Q

T

K,]= (Lanﬂ{V]“m] (v}TiN1 4@
Q
T T
X,1= (l-n)nqﬂm N]) (V17N 42
Q
2 T ]T T
K,]=n Qﬂm o™ ()TN do
Q
(£} = (Lnyp, [T (b) a2 +I[N1T{t1 dr + (1-0) [T (B) ar
2 T r

(£) = np, [T (b) @ + a [(NI"() aT
9} r

18
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(B,] = [L]"[N]

Combining Eqgs. 2.43 and 2.44, we have

el e R S
o Ml TLet e llg L K Kj{ﬁ}{f} =

or
[MI{d¥V} + [C]{d¥) + [K]{dv} -[6]{dN} = {df} (2.46)
where
(M, 0]
M] =
0 MUJ
..Cl -CT-
(Cl=| 1
AR
FK'+KI Kz}
K] = T
LK K

% OJ
(o) =[o 0

K] =j[BJT[D]£BuJ a0
Q
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Incremental equation of equilibrium can be written as

[MI{AdV] + [CT{AdV) + [K]{Adv) - [0]{dR) = {Adf) (2.45)

(5) Stress-Strain Constitutive Equation

Elasto-plastic behavior is considered in the stress-strain relationship
of the porous skeleton. In this report four different yield criteria, the
Trescas, Von Mises, Mohr-Coulomb and Drucker-Prager criteria, are

employed. The latter two are applicable to concrete, rocks and soils.

It is assumed that the following requirements are met:
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1. An explicit relationship between stress and strain must be
formulated to describe material behavior under elastic conditions,
i.e. before the onset of plastic deformation.

2. A yield criterion indicating the stress level at which plastic flow
comments must be postulated.

3. A relationship between stress and strain must be developed for post
yield behavior, i.e. when the deformation is made up of both elastic

and plastic components.
Before the onset of plastic yielding, the relationship between stress
and strain is given by the standard linear elastic expression.

S; =D, il & (2.80)

where Djjk] = tensor of elastic constant. For an isotropic material, Dyjx] is

expressed in the form of

Dijkl =285, + *uaikajl + p'aiiajk (2.81)

where A and i =Lame's constants; and 0jj = Kronecker delta defined by

. { 1 if i=j
= 2.82
& 0 if i#]j (2.82)

a. Yield Criteria
The yield criterion determines the stress level at which plastic

deformation begins. With the stress invariants defined by
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_1

I, =509 (2.84)
_1

5 =3 % %

the yield criterion can be written in the form of

£3,, 157 = S(s) (2.85)

where f and S = some functions to be determined experimentally; s =

hardening parameter; Jy' and J3' = the second and third invariants of the

deviatoric stresses expressed by

. P
' = O’ij - -3-851.0'“ (2.86)

Tresca vield criterion: This states that the yielding begins when the

maximum shear stress reaches to a certain value or
S, - 6, = S(s) (2.87)

for 01 > 62 > 63 where 1, 52, and O3 = principle stresses.

Von Mises vield criterion: This states that yielding occurs when Jo'

reaches to a value

—

(1,)% = Ss) (2.88)

The second deviatoric stress invariant, Jo', can be explicitly written as
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1 2
I, = E{(O’ -G ) + (0, - 0, ) +(o;-0) }
= %[(cx')2+ (cry')2+ (0’2')2} 15, +12, + T, (2.89)

Yield criteria, Eq. 2.88 may be further written as

F=435() (2.90)

where G is termed effective stress, generalized stress or equivalent stress,

expressed as

1
of(]) \/—{0'0'} (2.91)

Mohr-Coulomb vield eriteria: This is a generalization of the Coulomb

friction failure law defined by
T=¢ - Oytan ¢ (2.93)

where 7 and oy = shear and normal stresses, respectively; ¢ = cohesion; and

¢ = internal friction angle. For 61 > 03 > 03, Eq. 2.93 ean be rewritten as

0‘1+o' 5,5
——(0' -o,)cosp=c- 5~ sin ¢) tan ¢ (2.94)
or rearranging
(o, - g;) =2ccos - (o, +0y) sin ¢ (2.95)

Drucker-Prager vield criterion: This is a modification of the Von Mises

yield criterion for making it dependent on hydrostatic pressure like the

Mohr-Coulomb criteria. The influence of a hydrostatic stress component on

23



yielding was introduced by inclusion of an additional term in the Von Mises

expression given

1
o + (12')2 =5 (2.96)

The yield surface defined by Eq. 2.96 in the principal stress space is a
circular cone whereas that defined by the Mohr-Coulomb is a conical vield
surface whose normal section is an irregular hexagon. The following
expressions for @ and S makes the Drucker-Prager circle coincide with the

outer apices of the Mohr-Coulomb hexagon at any section:

2sind
= =Sne (2.97)
/3 (3 - sin ¢)
§=—bccoso (2.98)

_5(3-sind))

Coincidence with the inner apices of the Mohr-Coulomb hexagon is

provided by

o= 2sin ¢

=._=Sme (2.99)
43 (3 +sin ¢)

S = 6¢ cos §

=y (2.100}
43 (3 +sin o)

b. Work or Strain Hardening

If £ = s represents a yield surface, the elastic and plastic
conditions exist respectively when f< s and f=3. At plastic state, the

24



incremental change in the yield function due to an incremental stress

change is
af =2 go..
oG.. i
ij
Then if
df <0
df =0
df >0

(2. 105)

elastic unloading occurs (elastic behavior) and the stress

point returns inside the yield surface.

neutral loading (plastic behavior for a perfect plastic

material) and stress point remains on the yield surface.

plastic loading (plastic behavior for a strain hardening
material) and the stress point remains on the expanding

yvield surface,

c. Elasto-Plastic Stress-Strain Relationship

After initial yielding the material behavior will be partly elastic and

partly plastic. During any increment of stress, the changes of strain are

assumed to be divisible into elastic and plastic components such that

de,; = (de, ), + (de, ), | | (2.106)

The elastic strain increment is related to the stress increment by Eq. 2.80.

Decomposing the stress terms into their deviatoric and hydrostatic

components, the elastic component of the incremental strain can be

expressed as

25
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B g
3 HE,) (2. 114)

For the uniaxial case (61 =6, 63 = o3 = 0), Eq. 2.91 leads to incremental

effective stress and effective strain expressed respectively as

L
da=\/-5- {do.. do.’}? = do @2.115)
3 1} 1]

1
de= \/_ {(de,)), (de;)) ¥ =de, O Q@116)
Substitution of Egs. 2.115 and 2.116 into Eq. 2.114 leads to

T
r _ do dg 1 E
g - do _ = = 2.117
de, de-de, g _de, ET ( )

do do 1_5'

where ET = tangent modulus. Thus, the hardening function H' = can be

determined experimentally from a simple uniaxial vield test.

Adopting the strain hardening hypothesis, Eq. 2. 85 can be rewritten

as
F(o,s) =f(c) - S(s) =0 (2.121)

Differentiating Eq. 2.121, we have

dF-gF dc+3F ds =0 (2.122)

or
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{a}T(do} - Adk =0 (2.123)

where

oo 3
A=?1A:%1—;—ds . (2.125)
The vector {a} is termed the flow vector.
Eq. 2.112 can be rewritten as
(de) =[D ' {do) + dx{g—i}T o (2.126)

Premultiplying both sides of Eq. 2.126 by (a}T(D] and eliminating (a)T ds by
use of Eq. 2.123, the plastic multiplier dA can be expressed as

A = ——————— {a) "[DI{de) (2.127)
A+ (a) [DI{a)

Substitution of Eq. 2.127 into Eq. 2.126, with dDT = aTD and dD = Da, results

in
ep
do=D  de (2.128)

where
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D'=p.-d2dD__ (2.129)

The uniaxial conditions, ¢; = ¢ and o2 = 63 = 0, are considered. With

work hardening hypothesis, ds is
ds=o" de, (2.130)

Eq. 2.125 can be rewritten for uniaxial condition as

(o8

L_G 2
> ds ds (2.13D

A=
Employing the normality condition in Eq. 2.130 results in

ds=dial o (2.132)

Eq. 2.124 for uniaxial condition is

g:'_p_ =1 (2.133)
Using Euler's theorem applicable to all homogeneous function of order one,
we have |

_g_fc_ c=G (2.132
or

alo=0 (2.135)

29



Substituting Eqs. 2.133 and 2.135 into Eqgs. 2.132 and 2.131, * and A are

found to be
dy = de, (2.136)
A=H (2. 137

Thus, A is the second slope of the uniaxial stress-strain curve and can be

determined experimentally from Eq. 2. 117.

It is written as

J

sin 38 = -

% 3 (2.138)

3
(1,2

Then, the total principal stresses can be expressed by

c, % sin (B+23—n) 1
o, _25) Jsine +%1 1p (2.139)
S, | (9+—43£) 1

The focus yield criteria can now be rewritten in terms of J 1,J2 and 8 as

follows:

Tresca yield criterion
1

20,')° = o(s) (2.140)

Von Mises yvield criterion
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P

133, =(s) (2.141)

Mohr-Coulomb yield criterion
1

1 . "2 L i cim
§11 sin ¢ + (J,")" {cos O - —j_E_Sln Bsin¢)=ccosd (2.142)

Drucker-Prager yield criterion
1

o, +(T,) =S (2.143)

where o and S are given in Egs. 2.97 through 2.100.

In order to calculate the Dep matrix given in Eq. 2.129, it is required
to express the flow vector a and the elasticity matrix D in a form suitable for
numerical computation. The explicit form of the elasticity matrix D for

plane strain condition can be written as

1 N 0 N
N 1 0 N
E(1-v)
D] = —F ] 2.144
(D] I-2v 0 o NN o (2.144
2v
LN N 0 1_

where N = v/(1-v). The flow vector a for plane strain condition can be

written as

+ |9F_ OF 3F oF)
fa}’ = an’ ac}', atxy ’ ao.zj (2.146)

The specific form of the vector, {a)}, is given by
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{a} = C {a} +C,{a,) + C3[a3} (2.147)

where

(a)" =(1,1,0,1)

T_ 1

{a,} =—r {c,, Oy’ 214y, ;' } (2.148)
20, 2
5 1 5]
T t 1 r L t Ll r
(2] =[6y o, +%- , 6, G, +—§-, 20, 1, (0, O, 13y+—§—)|}

and the deviatoric stress invariants are

w2 w2 w2
1) = %[(cx) +(0,)" +(5,) Jﬂxf (2.149)

I'=0, [(crz')2 - 12'] (2.150)

The constants C1, C2 and C3 are to define the yield surface and are given as

follows:.

Tresca yield criterion

C, =0

C2=2cosa(1 + tan 9 tan 38) (2.151)
__f_3—__ sin B

G _Iz' cos 30

Von Mises yield criterion
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C, =0
C =43
G =0

2 (2.152)

Mohr-Coulomb yield criterion

=/Esin 8 + cos 8 sin ¢
2J," cos 38

C, = cos 9((1 +1an § tan 39)+§H‘J§#"(tan 3e-me)J 2.153)
G

Drucker-Prager yield criterion -
C=a

C, =10

G =0

(2.154)

The vector, dD, in DepP (Eq. 2.129) for plane strain condition is written as

4 ! 1
D=y L =ML p+ML (2.155)
d 2 1
where
__E
Ml—l-l-v
_Ev(a1+a_2+a.j) .
Tl +vX1-2v) 2. 156)
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2.2 Joint Element at Soil-Wall Interface

A discontinuity of the displacements develops at the soil-wall
interface due to large difference between the stiffnesses of the wall and soil
and due to sliding and separation between the wall and soil. The joint
element originally developed by Goodman (1976) can simulates such soil-
wall interface behaviors. Referring to Fig. 2.1, the joint element is
formulated in the following:

The nodal displacement vector in the s-n local coordinate system is

defined as

T

=g,y ug,u L ug e ) (2.157)

and also the strain vector as

(e)T= {v.e,w) (2.158)

where v, € and w are respectively average differential displacements in s

and n directions and angular opening between the two sides, expressed by

.+
us,] usl usi+usk

Y= 2 = 2

e e O T . (2.159)
E="3 2

_ unl ) unk ul'lj - uru
=" T L
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The relationship defined in Eq. 2.159 can be rewritten in the matrix form

such that
{e} ={L,]{u'}
where
[ 1 1 1
1 1 1oy
[Lo] =10 "i‘ 0 2 0 2
1 1 Lo
0 T °o-¢ 0 -¢

The stress vector in the joint element is defined as

T
{o} =(t. 0., M)

o

t"‘l&—‘ 09 =

(2.160)

(2.161)

(2.162)

where Tns, 0y and My are respectively shear and normal stresses and

moment, expressed by

1
‘Cns'-"L(f +fl)

=, + £,
T
M, = %(fnl - fnj)
The nodal force vector is defined as

T
{f} = (fsi ’ f“ni ’ fsj ’ fnj : fsk ’ fnk ’ fsl ' fnl)
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Egs. 2.163 and 2.164 with f; = -f5j result in

{f} = {B]{c} (2.165)
where
L 1
0 5 T
L
> 0 0
o L _L
T 2 L (2.166)
Br=f L o o
: L 1
f 2 1
EE
|_0 5- f—

The stress-strain relations at the soil-wall interface are assumed to

be as shown in Fig. 2.2. Yield shear stress Ty is assumed to be

E+o,tand  (e<0)

0 (€>0)
where € and ® = cohesion and friction angle at the soil-wall interface,

respectively. Furthermore, the following relationship is assumed:

1,3
Mg ={4L k, (e<0) (2.168)

0 >0
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With Egs. 2.160 and 165, the incremental force-displacement relation

at the soil-wall interface is obtained ag

T
i
{df) = {3f}{§?} {du'} = [BI{CIL,]{du’} {2.169)

where

T

(Cl= [ac){ 515} = (2.170)

o o &~

with

&

ks

9

(2.171)

0.
Q

=3

£

Thus the stiffness matrix of the Jjoint element in local coordinates is

(2.172)

] [,
KT =(BICHL} = ey g

with

K 0 -k, 0

0 2k 0 -2k,
(k] = & 0 k 0 (2.173)

| 0 2, 0 2k,
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kk 0 -k, O
00 0 0

k] = €0 ko (2.174)
L0 0 0 O_

The displacement and force vectors in the local coordinate system are

expressed by those in the global coordinate system as

{u'} = [T){u)}
{f} =[T]{f} (2.1753)
where

(0 0] [0] (0] T
(01 [ 0] {0]
[01 0] (1] [0 170
| 107 101 (0] [d_

with

COS¢ sing
ftl=} 217
-sinc coso

Then, the tangential stiffness matrix in the global coordinate system can be
obtained as

(K] = (T] [K'I(T] (2.178)
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3. TIME INTEGRATION FOR SOLVING EQUATION

Incremental equation of equilibrium equation for the problem

considered is written in the form of
M]{di} + [C}{da} + [K]{du) = {df} (3.1)

For the assumed linear variation of the acceleration and the corresponding

quadratic and cubic variations of the velocity and displacement, the Taylor

expansions at the end of the interval At leads to the following equations for

increments of velocity and displacement:

{An} = {i}At + [Aﬁ}% (3.2)

{Au} = {a}At + [fi}iﬁzt—z-f- [fn‘i}éf;i : (3.3)

Hence, Eqs. 3.2 and 3.3 result in the incremental displacement and

incremental velocity expressed in terms of incremental displacement as

follows:
6 5 .. ,
{Al} -qu} - Zx_:m - 3{i} (3.4)
(au} =2{au} - 30} -3¢0} - S 3.5)

Introducing Wilson 6 method, Eqs. 3.4 and 3.5 result in
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(i) = Ebu) - oty - 36} | (3.6

(R} =2 (Bu} - 3¢} - i} (3.7)
where
T=0At (3.8)

Substituting Egs. 3.7 and 3.8 into Eq, 3.1 leads to the following

equation of motion:

[K1{Au} = {Ap) (3.9)
where
K] = K] +;62{M] +31q (3.10)
Ap} = (A Stay + 3 3(a) + i)
(Ap} = {Af} + MY {0} +3{d} |+ [C) ) (3.11)

Solving Eq.3.9 for Y, the incremental acceleration Aii is

(B} = Su) - $a) - 3(3) (3.12)
and thus
{Aii) =é[3u'} (3.13)



The initial acceleration for next time step is given as

(i) = M) ((Af) - [C]{AR) - (K]{Au)) (3.14)

and the entire process may be repeated for any desired number of time

increments to compute the response time history.
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4. VERIFICATIONS

4.1 Static Problems

Uniformly distributed vertical load is assumed to be applied on the
surface of a saturated homogeneous elastic soil deposits uderlain by
mmpervious base. This corresponds to a classical one dimensional
consolidation problem. Theoretical solution for this problem was presented
by Terzaghi (1921). For the analysis by the developed program, a soil
column, 7ft. high, and 1 ft. wide, is descretized as shown in Fig. 4.1. The

material properties are as follows:

Young's modulus (E) = 6000 psf

Poisson's ratio (v) = 0.4

Coef. of permeability (k) = 2.5 x 104 ft/day
Density of water (prg) = 62.5 pef

The time factor T is defined as

T=2% (4.1)
H
where ¢y = coefficient of consolidation; t = time; and H = height of the soil
column. The coefficient of consolidation ¢v for the conditions considered in
this problem is 5.1428 x 10-2 ft2/day. Fig. 4.2 shows the variation of the
displacements at surface (node A) with time and Fig. 4.3 the variation of

excess porewater pressure along the axis of the column at various times.
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Good agreements between the finite element results and analytical results

can be seen.

A uniform strip load applied on a fluid-saturated homogeneous
elasto-porous half space is considered next. This problem has been solved
analytically by Schiffman et al. (1969). Finite element descretization of the

problem is shown in Fig. 4.4 and the material properties used are

Young's modulus (E) = 1000 KN/m2
Poison's ratio (v) = 0.

Unit weight of water (pgg) = 1000 kg/m3

The time factor T in this problem is defined as

- ct
T=- (4.2)

[«

where d = half of the width of loaded area; and

~2Gk
c —-—pf (4.3)

with G = shear modulus. Flg 4.5 shows the computed variation of excess
pore pressure, beneath the center of loaded area, at T = 0.1. Good
agreements between the finite element results and analytical results can be

Seen.

4.2 Dynamic Problems
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A uniformly distributed vertical load is applied over the surface of a
homogeneous fluid-saturated elasto-porous half space. The following two
different loading time histories, step function and triangular impulse time
histories, are considered as shown in Fig. 4.6. Analytical solutions for
those cases were presented by Simon et al. (1984). In the finite element
computation, the maximum intensity of the load is 10 units and material

properties are as follow:

Young's modulus (E) = 3000 units

Poisson's ratio {(v) = 0.2

Density of fluid (pg) = 0.2977

Density of solid (pg) = 0.3101

Porosity (n) = 0.333

Bulk density {p) = 0.306

Coefficient of permeability (k) = 0.004883

Bulk stiffness of solid grain (K) = 0.5005 x 104
Bulk stiffness of fluid (K¢) = 0.6106 x 105

The responses are computed for the step loading time history by
using the finite element descretization shown in Fig. 4.7 with soil depth = 60
units. The time step (At) is 0.002 time units. Figs. 4.8 and 4.9 show
respectively the comparisons of the solid and fluid displacements at the
surface (node A). Figs. 4.10 and 4.11 show respectively the variations of
solid and fluid displacements along the depth at t = 0.06 time units.

The responses are also computed for the triangular impulse loading

time history by using the finite element descretization as shown in Fig. 4.7
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with soil depth = 120 units. Material properties are same as those
aforementioned except K = ©© for the present problem. The loading
duration (= 2 Atg) is 0.021 time units. The time step (At) is 0.002 time units.
Fig 4. 12 shows the variation of displacement of solid and Fig. 4. 13 shows
variation of fluid displacement at surface (node A) with time. Variations of
the responses along the depth at t = 0,12 units are also shown in Fig. 4.14
through 4.17 for soild and fluid phases.
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3. EXAMPLE OF COMPUTED BEHAVIOR OF WATERFRONT SHEET
PILE WALL SUBJECTED TO EARTHQUAKE SHAKING

In 1983, Nihonkai Chubu Earthquake of magnitude 7.7 hit northern
part of Japan. The earthquake caused damages to quay walls at the Akita
Port located about 100 km from the epicenter. Damages were associated
with liquefaction in backfill sand. Fig. 5.1 shows a cross section view of a
sheet pile of Oohama No. 2 wharf, at which the water depth is 10 m. This
sheet pile was displaced about 1.1 m to 1.8m towards the sea and was
cracked due to excessive moment at about 4m above the sea bed. Sand boils
and settlements were observed at the apron, indicating liquefaction in

backfill induced during the earthquake shaking.

Based on information given by Tsuchida, et al. (1985), the soil at the
sheet pile is divided into four homogeneous layers as shown in Fig. 5.1. The
properties of each layer are Gmax = 65030 kpa, max. bulk modulus of soil
skeleton = 173400 kpa, ¢ = 37°, K¢ = 2x106 kpa. The sheet pile is FSP-VIy, type
of which second moment of area = 8.6x10-4, cross section area = 0.306 m2
and density = 7.5 /m3. The finite element mesh used is shown in Fig. 5.2.
The tie bar is idealized as massless beam elements and hinge connections
are assumed at the connections to sheet pile and anchor piles. Two anchor
piles and sheet pile are idealized by beam elements. The top ends of two

anchor piles are capped with a rigid mass.

Earthquake ground motions, recorded at nonliquefied ground at the
Akita Port, were used to determine input motions. The maximum

accelerations recorded are 190 gal and 205 gal in the NS and EW
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seconds corresponds to the end of shaking. The stress due to the
maximum bending computed is 320,000 kpa whereas the failure strength of
steel of the sheet pile is 300,000 kpa. Seismic effects significantly increase

the earth pressure and bending moment.
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. Fig. 5.4 Horizontal Displacement Time Histories at Various Locations
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Fig. 5.5 Vertical Displacement Time Histories at Various Locations
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Fig. 5.6 Horizontal Acceleration Time Histories at Various Locations
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Fig. 5.7 Excess Pore Pressure Time Histories at Various Locations
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Fig. 5.9 Bending Moment Time History at 6 m below the Sea Level
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Fig. 5.10 Bending Moment Stresses Induced in Sheet Pile at Various Times
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